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ON SINGULAR MODELS OF A THIN INCLUSION IN A HOMOGENEOUS ELASTIC MEDIUM* 

The equilibrium of an unbounded homogeneous and anisotropic elastic medium 
containing an inclusion, one of whose characteristic dimensions is much 
less than the other two is considered. It is assumed that the elastic 
moduli of the medium and the inclusion differ substantially. The principal 
terms of the expansion of the elastic fields in the neighbourhood of the 

thin inclusion are constructed in asymptotic series in small parameters of 
the problem: the ratio of the characteristic linear dimensions of the 
inclusion and the ratio of the characteristic values of the elastic moduli 
of the medium and the inclusion. The problem of constructing the principal 
terms of these expansions reduces to solving two-dimensional pseudo- 
differential equations derived by using the procedure of matching the 
external and internal asymptotic expansions /l, 2/. The results obtained 
enable two singular models of thin inclusions to be formulated for the 
cases when their elastic moduli are substantially greater and substantially 
less than the elastic modulus of the medium. It is shown that one of these 
models is 'equivalent to the model of a thin inclusion proposed in /3, 4,~'. 

1. Thin inclusion in a homogeneous elastic medium. In an unbounded homogeneous 
elastic medium, suppose there is a single inclusion occupying the simply-connected domain V. 
whose characteristic function is V(z), and z(z,, zp, x3) is a point of the medium. The elastic 
modulus tensors of the medium and the inclusion axe denoted by cg and c, respectively. The 
external stress field at,(z) (the strains %,(-z)) is produced by loads applied at infinity. 

The stress tensoro(z) and the strain tensor e(r) in a medium with an inclusion satisfy 
the relationships /5/ 

u=s (I) = o;'(z) + $ Sa”@ (z - 5’) BlslLvpo~~ (5’) V (2) dx’ (1.1) 

hs (4 II= Em@ (if - $ &&,, (X - 2') C~pfJ,.p (I’) v (X’) dX’ (1.2) 

Cl = c - c*, B1 = B - B,,, 3 = c-‘, B,, = co-+ 

The kernels of the integral operators s and K in these relationships are expressed in 
terms of the second derivatives of Green's function G(x) of the Lam& equations for the fund- 
amental medium CO 

K W.ll (4 = - (~,vrGm (4hmo~ (1.3) 

&semr(z)-_ c~"KV,*(r)e:"hW - Q%(z) 

Here 0 is the gradient operator in R3, and&(z) is the three-dimensional delta function. 
For an arbitrary homogeneous medium, G(x) is an even homoqeneous function of degree --1 whose 
Fourier transform has the form /6/ 

G* (k)=/?(k), Las(k)= k&W& (1.4) 

Hence it follows thatK(x) andS(x)are even homogeneous general.ized functions of degree 
-3 whose Fourier ttansforms axe homogeneous functions of zero degree. 

Multiplying both sides of (1.1) and (1.2) by v(x), we arrive at sys<ems of elliptical 
pseudodifferential equations to determine the fields a*(z) = c(x) V(z) and e*(z) = s(z) v(z) 
within the inclusion. It follows from the properties of the solutions of such equations /7/ 
that for domains with smooth boundaries, u+(x) and s* (z) are analytic functions in the 
domain V for external fields analytic within V. Elastic fields outside the inclusion are 
restored uniquely by means of known a*(~} and e*(z) using relationships (1.11 and (1.2). 

Now let V be a bounded domain, one of whose characteristic dhmensions is small compared 
with the other two. At each point z of the middle surface a of the domain V we select a 
local Cartesian system of coordinates y,, y,, y, with axis y, directed along the normal n (r) 
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to Q. Let h(x)denote the transverse dimension of the domain V along the Y, axis. The 
representation h(X)- &Z(Z) holds for the function h(x), where 6r is a small dimensionless 
parameter and l(x) is of the order of the maximum linear dimension of the domain V. We 
furthermore consider h(x) to be a sufficiently smooth function satisfying the condition 

I ah@) I<1 everywhere in Q with the exception of a small neighbourhood of the contour r, 
the boundary of 8. Here a is the gradient operation along 8 

a, = V, - n, (I) d (2) Vg, x e Q (1.5) 

We return to relations (1.1) and (1.2). For a fixed point sg V the kernels s(z -2') 
and K(z-- x') of the integral operators in these relations are smooth bounded functions. 
Hence, to an accuracy of higher-order infinitesimal components in 61, the following equations 
hold: 

IJ (I) = cio (5) + s s (x - x’) BIT“ (I’, h) dQ (1.6) 
n 

e (I) = eO (x) - s K (x - x’) cl;+ (I’, h) dbl’ (1.7) 
Q 

h&)/Z hW/z 

5+(x* 4 = _hiz,,2 
u+ (x + n (x) ~3) dye, E+ (5, h) = ‘j e+ (x + n (x) ~3) dy,, x E hl (1.8) 

-hWW2 

The terms on the right sides of (1.6) and (1.7) are the principal terms of the asymptot- 
its for the elastic fields outside the fine inclusion. As a rule these terms are of greatest 
interest for applications (see /3/). The presence of a small parameter in the problemenables 
us to use perturbation methods (see Sect.4) to construct them. The limit properties of the 
potentials in (1.6) and (1.7) are first investigated in Sect-Z, and the fundamental external 
limit solutions of the problem are found in Sect.3, i.e. expressions for the elastic fields 
outside the inclusion are found as the parameter 6, tends to zero. 

2. The potentials al(z) and e,(z). We introduce the following notation: 

m (x) = BP+ (XI, h) 

where ?(z,h) has the form (1.8). Then the integral components in relationships (1.6) and 
(1.7) are represented in the form 

.,(x)=S S(x -x') m (2') d&2’, el (x) = S K (x - x’) corn (5') dQ 
Q Q 

(2.1) 

Assuming m(x) to be as smooth a tensor field in Q as desired, we investigate the limit 
values of the potentials ur (2) and sl (2) as x+0. We will introduce operators for the 
orthogonal projection on the normaln(X) and the tangent plane to Q at the point ZEB(JI 
and 8, respectively) 

~&$(2)=$*6~fi - C@(x), @$(x)=(62- nh(x)na(x)) X (%P - n"(4n6(4)(w (2.2) 

(6f is the Kronecker delta). Using these operators,thearbitrary symmetric tensor field 
P (5) on s2 is expanded into a sum of "normal" pr(z) and "tangential" pa(z) components 

The tensor 

where b(x) is a 

p = PI + pt* p1L@ (2) = & (4 IJUA @I’ Pa@ (4 - es (4 Pw (4 

pr can be represented in the form 

plag (4 = wz (4 be, (4 

certain vector, and the tensor p, satisfies the condition 

na (4 pm6 (4 = 0 

and, therefore is a tensor of the surface B /8/. 
Let us represent the density C@(S) of'the potential cl(z) in the form of the following 

(2.3) 

where the vector b(x)is a solution of the equation 

n,(x) $%A (2) bp (2) = k(x) C?‘+b (x) 

Here the tensor q(x)in (2.3) satisfies the relationships 

nw((5)qa~(x)=Ov 8$(z)qhcI@)= Pe(x) (2.4) 

and is therefore a tensor of the surface Q. 
We consider the properties of the potential er(x) with density c,,sz = q, which is a 
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tensor of the surface SJ. Using Gauss's theorem for a surface /a/, we have 

e,,8(s)-S KMAU (r - s')e$ (x')qVP (t')dsz = 
n 

(2.5) 

- y(, %r(s - 
z 

z') &.‘qAw (5’) d61’ + $ t(aG~)lr (x - 5’) q”fi (2’) e,, (I’) dr’ 
r 

where e(z)is the external normal to the contour r, that lies in the tangent plane to Q at 
the point IE r. Here (1.3) forK(z taken into account, as is also 

Wel,(s- z')] e$ (2') qvp (5') = - ah’ [Gar (3 - 5’) q”” (1’)] f GBP (I - 2’) aLq*p (I’) 

which follows from (1.5) and (2.2); the prime on the operator 8 denotes differentiation with 
respect to 2'. 

The integral with respect to r on the right side of (2.5) is a continuous function for 
all 2 E 9 (5-E r), and the integral with respect to Q is a symmetrized gradient of the 
simple field potential of static elasticity theory with density &.qw(z). It is known /9/ 
that the gradient of a simple layer potential is a regular function in all space and discon- 
tinuous on the surface 8. 

Let er+ (2) and e,-(s) denote the limit values of the potential sr (2). as the point z 
tends to fi from the normal and the opposite sides, respectively. It can be shown that the 
difference [s,] between the limit values of the potential under consideration is given by 

[tia~(s)]=C~(s) -s;,p(~)=n(~(~)G~~:jp(n)a~~~~(~) 

where the function G*(k) has the form (1.4). In the case of an isotropic medium, an analg- 
ous relationship for Ie,] is obtained in IS/. 

It therefore follows that the tangential component 8 (z)er (Z) of the potential q(z) is 
continuous during the passage through P. An integral of the type (2.5), representing the 
value of the function e(s)e,(z) on the surface 9, diverges formally. The problem of 
regularizing such integrals was examined in /lo/. It can be shown that in this case the 
regularization formula for the integral mentioned has the form (zEQ) 

@$ (5) elhlr (5) = S UC+LA (59 x ‘1 e (x’) m’ = 5 UapAp (5, z’) tq*w (2’) - q:’ (zr x’)] dn’ - 
n n 

(2.6) 

63% (x) f VSrv (I - 9) q?’ (x, 2’) ep (4 dr 

Uap.,, (x, z’) = a!?$$ (5) &,,pj (5 -- 2’) %“, (2’) (2.7) 

The symbol j denotes an integral in the Cauchy principal value sense, and q,,(x, 2’) is 
a constant tensor field in 8. The function q&, 2') 
and agrees with q(Z) for 5' = 2. 

satisfies the equation a’qo(x,x’) = 0 

Consider a potential cl(z) of the form (2.1) with density m (5) = Boq (X) where P (5) 
satisfies conditions (2.4) 

01(x)= S(z -z')&q(x')dP S (2.8) a 
It follows from (1.3) that this potential is connected with the potential (2.5) by the 

relationship uy (I) = ci?fu (4 - QaS (4 6 (Q) (2.9) 

where 6 (Q) is a generalized function concentrated on the surface n. It can be seen there- 
fore that the limit values of the potential 01(Z) on Q agree , apart from the constant Co, 
with the limit values of e,(z). 

We will now consider a potential er(x) of the form (2.1) whose density is determined 
by the second term on the right side of (2.3) 

elag (x) = S ~,p.p (X - 2’) cP’~, (3’) bp (2’) d&J (2.10) 
P 

It follows from (1.3) for K (x)that cl(z) is a symmetrized gradient of a double layer 
potential of static elasticity theory. 

If b(x)in (2.10) is a smooth vector field in 8, then the potential el(x) can be repres- 
ented in the form 

eras (4 = eB6 (4 + 3, (4 43) (4 6 W (2.11) 

where q'(z) is a regular function that is discontinuous on n. The limit values of the 



potential El(z) are determined by the relationship 

E&j (5) = 
s 

&ml* (z - 5’) c~%., (z’) [b, (5’) - b, (s)] ddZ’ + 
P 
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(2.12) 

Here I is the unit quadrivalent tensor, G* (k) has the form (1.4), and the functionR((s) 
is represented in the form of an integral over the boundary contour r of 51. 

A representation analogous to (2.9) 

$a(~)= ~~@'g~(z)-c~~"n&) $(x)6(Q) (2.13) 

holds for a potential ~~(5) of the form (2.1) with the density m (5) = n (t) b (z) , where 
el (5) is the potential (2.10). 

Hence, and from (2.11), it follows that the function U,(I) has no singular components, 
while its discontinuities on Q are determined by the relationship 

[a;"(z)] = - S"M (n) &bu (I), S”@“(n) = c;@@A$ (n)’ 

Using this result it can be shown that the vector na(z)uraa(z) is continuous on passing 
through Q. The value of the function n~(s)apB(z) on Q is given by the formula /lo/ 

- ng (2) u;"~ (2) = s !PB (2, I') bg (s’) ds’ = 5 Z’@ (5.~‘) [ba (2’) - bp (z)] d-2’ + I-@ (5) be(z) (2.14) 
P P 

T@ (5,~‘) = nk (5) PC (5 - 5’) nw (2’) 
(2.15) 

An expression for the functionr (S) in the form of a contour integral over r is given 
in /lo/. 

3. The external limit problems. We will consider solutions of the problem of a 
thin inclusion as the parameter 6,(h) tends to zero. If the inclusion has finite, non-zero 
elastic moduli, then the elastic fields within the domain V remain bounded in the limit as 

&-CO- It then follows from relations (1.8) that as h-+0 the functions 
8* (z, h) vanish. 

8+ (z,h) and 
We obtain from (1.6) and (1.7) that the stresses and strains outside the 

inclusion agree with the unperturbed external fields uO(z) and s,(z) as the transverse dimen- 
sion tends to zero. 

The need to examine thin inclusions whose elastic moduli differ substantially from the 
elastic moduli of the medium occurs in a number of applied problems of materials science and 
fracture mechanics. In the case of inclusions more pliable than the fundamental medium, the 
tensor c is here representedinthe form c = 6,c,, where 6, is a small dimensionless parameter 
while the characteristic values of the tensor component C+ are of the order of the elastic 
moduli of the medium. If the inclusion is stiffer than the medium, then the tensor B allows 
of an analgous representation. Since the solution of the elastic problem depends now on two 
small parameters 6, and 6,, 

6, 

it is best to extract terms of the order of unity compared with 
and 6% that yield the principal contribution to the asymptotic of the elastic fields out- 

side the inclusions, in the external expansion. In connection with the problem of construct- 
ing these terms, we consider the passages to the limit as the parameters 6, and 6% tend 
simultaneously to zero. 

First, let the tensor c of the elastic modulus of the inclusion tend to zero together 
with h. From the relationship 

B&f+ = (c-l - &I) cc!+ = - c;e,i? 

it follows that B,E++F as cl+ -c,(c+ 0). Hence and from (1.6) and (1.7) we obtain 
that as h, c+ 0 (61, 8% + U) the externai solution of the problem of a thin inclusion takes 
the form 

u(z)=uo(z)+SS(z--z')F(z')da (3.1) 
P 

e (z) - e. (2) + 1 K (z - 5’) cob (5’) d&2 
P 

E+ (Z)P h'iIm_E'(z,h) 

(3.2) 

(3.3) 
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The function under the limit is defined by the relationship (1.8). 
On the other hand, by virtue of the boundedness of the elastic modulus tensor of the 

inclusion in the limit as h,c+ 0 the stress vector n(Z)U(z) should remain continuouswhen 
passing through the surface Q. However, the continuity conditions for the displacement 
vector on Q can be spoiled because of the disappearance of the elastic modulus of the inclus- 
ion. The limit displacement vectors u(z)and stresses on the surface Qsatisfy the relation- 
ships 

[II @)I 1s = b (z), [n (5) u (41 In = 0 (3.4) 

where b(z)is a still unknown vector of the displacement field jump in Q. 
It hence follows that the limit strain field e(z)should contain a singular component 

s(Q) with a coefficient equal to the symmetrized produc of the vectors R andb. We then obtain 
from (1.8) and (3.3) that the function p(z) has the form 

G@(s)= nca(s)be,(r) (3.5) 

Substituting this relationship into (3.1) and (3.2) we arrive at the following express- 
ions for the stress and strain fields in a medium with a limit inhomogeneity: 

u(x)=uO(x)+ Ss(5-.d)n(+(x’)d62 
0 

e (x) = eo (I) + $ K (X - 5’) con (x’) b (5’) dQ 

The integral COmpOneIItS are the potentials 01(z) and El(z) of the form (2.1) whose den- 
sityin (sjagrees with the right side of (3.5). From the properties of the potential 01 (2) 

mentioned in Sect.2, it follows that the condition (3.4) for the continuity of the vector 
n (5) 0 (2) on Dis satisfied automatically for a field u(s)of the form (3.6). But then the 
equality (hc=+ 0) n (2) u (x) = Ia-' (5) n(s) tic (2, h), 5 E 9 

holds to within terms of the order of 6,, where the function ?(.r,la) is defined by the re- 
lationship (1.8). 

Substituting Hooke's law for an inclusion here 

I?+ (I, h) = ce+ (x, h) (3:8) 

we obtain the connection between the vector b(x)and the stress vector on the surface 

ng (2) OCL@ (I) = Ve (5) b,, (x), ha@ (5) = ,,li% h-l (4 nh (4 ch~% (zJ (3.9) 

by passing to the limit as h,c+O and taking (3.51 into account. 
Utilizing the expression for the stress tensor (3.6), we hence obtain an equation which 

the vector field b(s) satisfies on D 

h=E (x) bB (x) + s Tae (x, z’) bp (2’) dn’ = ng (5) at5 (z), I E Q 
P 

(3.10) 

The action of the integral operator T with kernel T(z, 2') from (2.15) on the smooth 
functionsb(z)is determined by the right side of (2.14). 

Therefore, the limit solution of the problem of a thin inclusion as h,c+O has the form 

(3.6), (3.7), where the vector b(z) is determined from the soluion of (3.10). If h (5) = 0, 
then (3.10) reduces to the equation for the problem of a crack in a homogeneous elastic medium, 
which is examined in /lo, ll/. 

Now, let the elastic pliability tensor of the inclusion B tend to zero together with h. 
Since 

c,z+ = (B-1 - B,-')BE+ = _&-1&G+ 

then C,E+ + Z+ as B1 -b - B. (B * 0). 
Hence and from (1.6) and (1.7) we obtain that as h,B-~0 the solution of the problem 

of a thin inclusion takes the form 

u (2) = u. (z) - s S (x - z’) BoiT+ (5’) dQ 
0 

(3.11) 

e(z)=e~(z)-~K(z-zZI)Et(~l)dQ’ 
0 

S+(5)= hl\m4Z+(z, h) 

(3.12) 

(3.13) 
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Since the elastic moduli of the inclusion become infinite in the limit, the condition 
of continuity of the displacement vector on passing through the surface a will be satisfied, 
but the continuity of the stress vector (the local equilibrium condition) may be spoiled. 
The limit values of the displacement vector and the strain tensor satisfy the following con- 
ditions on 

Iu (2)l I* = 0, 18 (5) e (5)lIn = 0 (3.14) 

The first of these conditions means that the strain field contains no singular component 
proportional to 6 (a). Hence and from the property (2.11) of the potential El(s) it follows 
that the density z*(r) in (3.111 and (3.12) should be a tensor of the surface 8, i.e.,should 
satisfy the relationships _ 

tion 

face 

n, (4 PC+ (2) = 0, es (x) ziii+cQ (2) I i++ (JJ) (3.15) 

It therefore follows from the results of Sect.2 that the field (3.12) is a regular func- 
that automatically satisfies the second of conditions (3.14). 
Using the continuity of the tangential component of the limit strain tensor on the sur- 
Q, it can be shown that, apart from terms of the order of 6,, the equation 

8 (2) e (2) = h-1 (2) 6 (z)z+ (2, h) 

is satisfied, where the function p(s,h) has the form (1.8). 
Expressing E*(s,hf in terms of p(z,fb) by using the Hooke's law for an inclusion (3.81, 

taking account of (3.151, and passing to the limit as h,B+O, we obtain in the preceding 
relationship 

(3.16) 

Substituting expression (3.12) for E(Z) here, we arrive at an equation for the fieldP((;t) 
on D 

The action of an operator U with kernel U(X,Z') of the form (2.7) on smooth functions 
a'i (x) is governed by.the right side of relationship (2.6). If p = 0, then (3.17) goes over 
into an equation for an absolutely rigid surface (membrane) in a homogeneous elastic medium. 

It can be shown that the operators T and U in (3.10) and (3.17) are elliptic pseudo- 
differential operators whose principal homogeneous symbols are homogeneous functions of the 
first degree /lo/. By continuity, the operators T and U are extended to the class of Sobolev- 
Slobodetskii generalized functions on P /7/. The SYIUbO~s of the pseudo-differentialoperators 
in (3.10) and (3.17) differ from the symbols T and U by positive-definitecomponents(h(t) and 

P(S) , respectively) and hence are also elliptic. The conditions for equations of the type 
(3.10) and (3.17) to be solvable are investigated in /7/. 

The preceding consideration shows that the external solution of the problem of a thin 
inclusion obtained as the parameters brand 6, tend to zero is not defined uniquely and 
depends on the limit of the ratio 6&. The magnitude of this ratio determines the functions 
h(s) andp(z (3.10) and (3.17). For a unique assignment of these functions, we use the 
procedure of matching the external and internal asymptotic expansions of the solutions in 
small parameters of the problem /l, 2/. 

4. The internal limit problem and matching procedure. We take an arbitrary 
point x on the surface Q (zzr) as the centre of a local 611. &,ya coordinate system. We 
define the natural internal variables of the problem of a thin inclusion by the relationships 
/l/ 

El -P(z)y,, i= 1, 2, 3 

Letting the parameter &(h)tend to zero, we arrive at the internal limit problem which 
(in the coordinates Et) is a problem on the equilibrium of a homogeneous elastic medium con- 
taining an~i~~~u~~~ in the form of a plane layer of unit thickness in the domain 1 Es I<‘/%. 

Let e s,(r) denote the stress and strain fields corresponding to the solution 
of the external limit problem. Using the method of matching the external and internal asymp- 
totic expansions /l, 2/, we take the elastic fields on the interface between the medium and 
inclusion in the internal limit problem equal to the limit values of the fields a,(z) ande,(t) 
at the point xfQ 

lim a@=U,*(z), 
M'h 

lim e@=e$(e) (4.1) 
M'h 

1t is here assumed that the point $(&, Et, Es) tends to the plane g, = 112 or E;r= -112 
while remaining outside the layer. 
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Let the elastic moduli tensor c of the inclusion be small compared with the elastic 
moduli tensor of the medium (cc,,-1 =O (6,)). It is natural to select the zerbth approximations 
c."(X) and e,"(X) for the external solutionsa, and a, (X) in a form agreeing with (3.6) and 
(3.7), and corresponding to the limit of the external solution as &, 13~-+0 

a,“(x) = uo (x) + s S (x - x’) n (5’) bo (5’) dQ 
P 

(4.2) 

eeo (5) = e,, (2) + S K (x - x’) con (x’) bo (x’) dQ 
n 

(4.3) 

Here the vector b,(z) is the solution of (3.10) in which we consider h (5) to be still 
an arbitrary smooth function of order c/h. 

From the properties mentioned in Sect.2 for the potential on the right side of (4.2), 
it follows that the stress vector n(x)UeO (x) is continuous in 52. Hence, its limit values 
no." and nu,'- at the point SE Qagree and have the form 

n (x) u,O+ (x) = n (I) u,O- (I) = h (x) b, (x) (4.4) 

The relationship (3.9) which the external solution u,'(x) satisfies, is taken into account 
here. 

Using (2.12), we write an expression for the limit values of the tangential component 
of the tensor e,"(X) on the surface Q 

0 (x) ei* (I) = 0 (x) D (x) f 6 (x) ab,, (x) (4.5) 

x’) con (5’) [bO (x’) - b0 (x)] dhl’ $- R(x) b0 (x) 

It is known /12/ that on the interface between the medium and the inclusion the stress 
vector and the tangential component of the strain tensor are continuous. Consequently, the 
conditions (4.1) for u, = ot, e, = e," can be satisfied if the stresses and strains 
a+(E) 

c+ (5) 
within the layer are defined by the relationships 

n (X) c+ G) = h (x) b, (x), u+ (5) = ce+ (5) 

8 (X) a+ (E) = 8 (X) D(X) + 2ES9 (I) abO (4 

(4.6) 

Note that conditions (4.1) do not define the elastic fields within the layer uniquely. 
As will be shown below, when constructing the principal terms of the asymptotic expansion 
under consideration, it is possible to limit oneself to the simplest linear approximation 
(4.6) of the elastic fields within the layer. 

Changing to the external variable yl in (4.6) and substituting the result into (1.8), 
we find an expression for the integral characteristic ?(x, h) in the zeroth approximation 

n$(X)$.,,(X, h)=n(a(X)blg,(X)v @$(X)&(X, h)=O(&) (4.7) 

b~a(X)=gcra(X)b,~ (X) +O(he), g(X)=h(X)d-l(X)h(X) 

d@(x)=nL(x)&awnp(x), g(X)=O(&/&) 

The function ?(X,h) is expressed in terms of T* (I, h) by using (3.8) . Here and hence- 
forth it is assumed that 61/6, = 0 (1). 

We substitute e'(X,h) from (4.7) into the right side of (1.7) and denote the result by 

ai (5). The field et(X) is the external limit of the internal solution (see /l/1. Extracting 
terms of the order of 6,/h, in the expression for ei(x), we will have 

ai(X)=ao(X)+ SK(X - x’)con(X’)g(x’) bo(x’) d62’ + O(6p 6,) 
n 

Comparing this expression with the right side of (4.3), we obtain that the principal 
terms of the external limit of the internal solution ei(x) merge with the external solution 
e,"(X) provided that 

ga= (x) = Sba or h (x) = h-l (x) d (x) (4.8) 

It hence follows that the external expansions of elastic fields outside a thin inclusion 
have the form 

u (5) = u: (2) + 0 (a,, 6,), e (5) = e,” (x) + 0 (61, 62) (4.9) 

where the functionsU,'(X) and a,'(X) are defined according to the relationships (4.2) and (4.3) 
and the vector b,(x) therein is tie solution of (4.10) for h(X)in the form (4.8). 

Now, let the elastic compliance tensor of the material of the inclusion be small compared 
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with the elastic compliance tensor of the medium (BBo-' = 0 (6,)). By matching the external 
and internal asymptotic expansions , we select the zeroth approximation for the external solu- 
tions Ur and e, in the form (3.11) and (3.12) corresponding to the limit of the external solu- 
tion as 6,, 6,--t 0 

u,o(z)~ so(z)- s S(z - z')B&+(z')dQ (4.10) 

Q 

eeO(zj = co(z)- 1 K(s - z')&+(t')d62 
Q 

The density iiO'(z) is determined from (3.17) in which his still an arbitrary smooth 
function of order B/h. 

The internal limit problem has the same meaning as in the preceding case. To solve the 
internal problem under conditions (4.1) , expression (4.10) should now be substituted for the 
external solutions. 1t can be shown as before that the external limit of the internal solution 
matches the external solution (4.10) if the density c,+(Z) of the potentials in these rela- 
tionships satisfies (3.17) for p(r)in the form 

poN.,,(z) =h-l(s)%g @)&&&) (4.11) 

The functions O,'(r) and se'(z) of the form (4.10) are here the principal terms of the 
external expansions of the elastic fields outside the thin inclusion and, apart from compon- 
ents of the order of & and ii,, approximate these fields werywhere with the exception, 
generally, of a small neighbourhood of the boundary contour r. 

5. Singular models of thin inclusions. In considering thin inclusions in a homo- 
geneous elastic medium, it is best in a number of cases to replace the three-dimensional in- 
clusion by an equivalent two-dimensional singular model. It is proposed /3, 4/ to replace 
the problem of a thin inclusion by a boundary value problem of elasticity theory for a homo- 
geneous medium co1 and to select the conditions on the middle surface of the inclusion P 
modeling the presence of an inclusion in the form 

[no]IQ = 0, [u] IQ = b, ng IQ = hb (5.1) 

where the tensor h has the form (4.8). The first of these conditions is called the equili- 
brium condition in /3/, and the last is called Hooke's law for the inclusion. It is assumed 
that the solution of the boundary value problem satisfying the given conditions at infinity 
is a good approximation of the asymptotic for the elastic layer outside the thin inclusion. 

The boundary conditions (5.1) evidently agree in form with conditions (3.4), (3.9). 
Consequently, the solution of such a boundary value problem has the form (3.6), (3.7), where 
the vector b(z) is determined.from (3.10). 

The connection between the solution of the model problem under consideration and the 
exact asymptotic form of the elastic field outside the thin inclusion is essentially given 
in Sect.4. By virtue of the estimate (4.9), this solution will aproximate the asymptotic form 
of the exact solution all the more, the smaller the magnitude of the relative transverse 
dimension of the inclusion 6, and the ratio 6r of the characteristic elastic modulus of the 
inclusion to the characteristic modulus of the medium. It is natural to call such inclusions 
crack-like. The effect of hindering the strain on the inclusion is not taken into account 
when replacing them by a singular model with conditions (5.1) on P, whereupon the tangential 
component of the strain tensor may turn out to be discontinuous on the surface 9. 

To construct the asymptotic form of the elastic fields outside a thin inclusion whose 
elastic moduli are substantially greater than the moduli of the medium, it is natural to use 
a two-dimensional singular model with the conditons (3.14) and (3.16) on Q where the former 
can be called the strain compatibility condition , and the latter can be called Hooke's law 
for the inclusion. The solution of this problem has the form (3.11), (3.12), where the func- 
tion F+(r) is determined from (3.17) in which p(r) has the form (4.11). As is shown in Sect. 
4, a singular model of a rigid inclusion with conditions (3.14) and (3.16) enables us to 
describe the asymptotic form of the elastic field outside the inclusion more exactly, the 
smaller the parameters 6, and b, where 6r is the ratio of the characteristic elastic modulus 
of the medium to the characteristic elastic modulus of the inclusion. Only the effect con- 
straining the strain on the inclusion, which plays the principal part in the case of rigid 
inclusions, is taken into account in replacing the real inclusion by such a singular model. 

1. 

2. 
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A METHOD OF MAKING IMPEDANCE MEASUREMENTS OF THE VISCOELASTIC PROPERTIES 
OF A MEDIUM BY OSCILLATING PLATES AND SHELLS* 

B.R. VAINBERG and V.N. KRUTIN 

A method of measuring the viscoelastic properties of a homogeneous medium 
bounded by plates and shells is presented, based on processing observations 
of arbitraryoscillations. 

The impedance measurements an attempt is usually made to use the simplest forms of oscil- 
lations and obtain one-dimensional motion. However if the region in which oscillations are 
excited is of limited size this gives rise to difficulties due to diffraction or edge effects, 
and the excitation of modes of oscillation that are not used in the measurements. An increase 
in the dimensions of the excitation region in order to reduce the influence of these effects 
usually requires an increase in the stiffness, and hence also in the mass of the probes, which 
reduces the measurement sensitivity, and makes them virtually impossible at high frequencies. 

A method is propsoed in the present paper of processing the observed arbitrary oscilla- 
tions of plates and shells, which enable us to obtain the same results and formulas for the 
simplest modes of oscillation including one-dimensional modes. This is also feasible in cases 
for which this realization is practically impossible, which enables the range of impedance 
frequency measurements to be extended. The viscoelastic properties of the medium are deter- 
mined in terms of displacements and stresses on the plate or shell surfaces for arbitrarily 
small oscillations. 

Let the oscillations of a homogeneous plate or shell with bounding surfaces S, and S, be 
used for impedance measurements, where the surface St is in contact with the viscoelastic 
medium being investigated. The oscillations observed on the surface S1 and their properties 
are used to determine the properties of the medium. Such plates or shells can be, for example, 
the walls of apparatus, autoclaves, containers, or pipelines, the values of underground struct- 

ures, or natural objects. We shall restrict our consideration to the simplest configurations 
of plates and shells. 

The equations of small oscillations of a plate (shell) and medium have the form /l/ 

. k,:* grad div u,- x1-’ rot rot u, + uj = 0 (1) 

kj = o/c~, Xj = OlVj, cj’)/(hj + &j)/pjt vj= f/lrjlpj 

*Prikl_Matem,Mekhan.,48,1,92-97,1984 


